Theory of Operation and Functional Diagram
The PH300 is a peak-hold device, designed to track an analog input pulse and keep the maximum amplitude as a peak voltage on a hold capacitor. Major functional elements are identified in the functional diagram above. An innovative boot-strap circuit in the input stage of the output buffer amplifier, minimizes the droop error which occurs during periods of long peak-hold duration. Inputs to the IN terminal are gated through a linear gate (gate input), which is controlled by a TTL compatible logic signal. When the gate is open (gate high), the input signal is sensed by the error amplifier. When the gate is closed (gate low), the input to the error amplifier is grounded and the input signal does not have any effect on the output of PH300.
During the rise time of the input signal, the hold capacitor is charged through a charging diode and a hold resistor. For the PH300, this mode of operation is referred to as the charging mode. The device goes into hold mode as soon as the input reaches Vmax and starts to decay. This state can be terminated by discharging the hold capacitor. When the circuitry to accomplish this is enabled, the PH300 is placed in discharge mode. A special case of the discharge mode is the tracking mode. Additional information on each of these operational modes follows.
Charging mode
The hold capacitor is charged during the rise time of the input signal. The rise time of the input pulses can be as short as 250 ns. When the PH300 is in charging mode, negative feedback is applied to the amplifier through the high impedance output buffer. Under this condition, the output voltage follows the input signal and the peak detector logic output is in the inactive state. The feedback circuit brakes immediately after the input goes through a maximum level and starts decaying. The PH300 then enters hold mode.
Hold mode
In this mode, the charging diode is reverse biased and the voltage across the hold capacitor is held equal to Vmax. The peak-detector logic output is in the active state. The leakage currents of the components connected to the hold capacitor causes it to discharge. The rate of this discharge is the droop rate of the PH300.
Discharge mode
The hold capacitor could be intentionally discharged by enabling the reset circuit within the PH300. Two types of reset are possible. They are: (i) ramp or linear reset and (ii) dump or fast reset.
In ramp discharge mode, the hold capacitor is discharged through a constant current draw, which is set with an external resistor or by an external current source. Constant current discharge results in a linear decrease of the held voltage. This operating mode is used in Wilkinson type analog to digital converters.
In fast discharge mode, the hold capacitor is discharged through a large current draw for a short period of time. The frequency and duration of this mode of operation determines the upper limit of power consumption for the device.
Tracking mode
Negative feedback to the amplifier could become active (and correspondingly the peak-detector logic output goes to the inactive state) in discharge mode operation, if the hold capacitor voltage becomes less than or equal to the voltage at the amplifier input. Therefore, if the discharge rate of the hold capacitor is higher than the decay rate of the input signal, the output of the PH300 will follow the input even when the signal is decaying. This mode of PH300 operation is referred to as the tracking mode.
Input Protection – CAUTION
The input (Pin 1) of the PH300 connects internally directly to an input of a CD4066 Quad Bilateral Switch. Vdd, the positive supply for this chip, connects to V+ (+5 to +12 V), Pin 14 of the PH300 and Vss connects to GND, Pin 8. Normal precautions for the use of the CD4066 must be observed with the PH300 to avoid damage. These precautions include keeping the input voltage within (Vss – 0.5 V) and (Vdd + 0.5 V).
In particular, care should be taken that these conditions are not violated on power-up or power-down, or when a connector is mated or de-mated with power on.
Input protection can be provided by a current-limiting resistor (>200ohms) in series with the input, or by connecting a diode from the input (Pin 1) to ground (Pin 8), with anode grounded.